Sign up Latest Topics

  Author   Comment  
Juerg Feldmann

Fortiori Design LLC
Posts: 1,530
MOXY is  an incredible tool  for strength   workout feed backs  live but as well as  to find  " weaknesses, when looking at symmetries in the body's ability ( leg comparison  or  arm comparison.
 First  to  accept is :
 The values   if comparing left and right  are not absolute. So  use trend information rather than absolute values  for SmO2  and  for tHb  it is anyway  not an absolute values  but again a trend information.
 Here in short :
 tHb. Trend of  blood flow ( volume ) change.
  tHb  can be used to see the " quality"  of the contraction.
 Is it a     contraction with an effort who creates  a compression only.
  An effort  who creates a venous occlusion  or a  full  effort who creates  an arterial occlusion. So 3  trends  to look  for.

SmO2  is  a trend information on the metabolic  demand   you create  during the contraction.
  Do you contract  so  you  deliver  more O2  than you actually need.
  do you contract that you  just use  what you deliver  or  do you contract that you use more than you can deliver.

Back to tHb.
 If  you do  just a   contraction  with  some  compression trend  than tHb  will drop  at the start and    than leveling out on a flat section. If you let go tHb will go back to base line  or over shoot baseline.

If you contract  more than  just compression and reach a venous occlusion pressure  tHb will =initially  drop (Compression outflow  )  followed by an increase  above and beyond base line due to "pooling" caused by venous occlusion an tHb will go up. At the end of  contraction tHb will initially drop as a pooling out flow  before settle back to base line.

If you go all out  and reach a  arterial occlusion than  you see an initial   compression outflow  with a venous occlusion  tHb increase  and a plateau due to art  occlusion ( no in  an outflow)  at the end of  contraction here you see  a tHb  outflow due to  pooling outflow.
 Here a  picture of 4  in sequence    biceps contractions looking  at tHb
3 biceps  iso.jpg

  MOXY can be used  to see the "effort"  of a contraction by an athlete  and or patient. Than   based on this feedback we  can decide  , whether we like to have  a local  deoxygenation ( create an arterial occlusion )  or whether we like to have a systemic  feedback loop  to  integrate  systemic  compensatory ptions into the equation.

 Here  a case study with a systemic  planned  reaction.
local occlusion systemic vasocionstriction.jpg 

Next up    on how to add  or use SmO2  for strength  and  than how you can combinee  both informations.

Juerg Feldmann

Fortiori Design LLC
Posts: 1,530
Now lets' compare the " quality " of a contraction  and the metabolic demand of the same contractions.

Here  the above tHb trend  traces  of the biceps contraction  just as a  trace. You can  go back and see, what the different trend  reactions mean.

tHb trace only
bi iso thb.jpg
Summary  : tHb  can give you a better idea on the  "quality" of the contraction.
 Meaning : Do you create a contraction force, which  actually creates an arterial occlusion.
Or  do you  create a venous occlusion, meaning that you still have O2  delivery  but you have  no CO2   output , as well a  fast "pooling" this creates a situation,  which has the name muscle  pump  or  in some sports  like  rock climbing , forearm pump. Or  do you control your  contraction  so you only create a  compression    to a certain  degree  so you keep inflow  and outflow  going on a certain level.

Now  let's see how  the same  workout looks, when we only  show SmO2 traces.

bi isom smo2.jpg 
You can see  a  very low  drop in SmO2. This often indicates an  incredible great  contraction quality, as  an arterial occlusion is   similar to an actual occlusion test, where we  use a tourniquet  to  complete  stop blood flow to a certain   area. This as well is a  kind of a " validation" whether your NIRS equipment  actually works.

 Now  to make it easier   let's overlap both  above traces ( tHb  and SmO2)

smo2 thb isom.jpg

Now look at the 4th contraction and you start to see the fascinating feedback we  can get  when looking  during a workout on tHb  and Smo2   in different ways. Let's  try to  put  it in simple  wording, like a  live presentation from an ice hockey game.
You see a  " fascinating " mental preparation  for the 4 th contraction  in the tHb. tHb is increasing  out of  what ever feedback already before  he actually start to  make a contraction  asking for O2   utilization. Than he reaches a certain  level but lower quality of contraction force compared to the three  x  before. He  reaches a  0 SmO2 level but not a  full long lasting  arterial occlusion.
. He   has a problem to hold the  contraction quality , in fact gives up the contraction quality  and so strong, that he  has a short pooling outflow, meaning  his contraction force  goes lower than  the needed  contraction force    needed  for  maintaining at least a venous occlusion trend.
 If  he would have backed of  to a venous occlusion   his tHb  would not have dropped but increases ( inflow  but still no  outflow) in this case he  " relaxed  below venous  occlusion strength so  pooling outflow. He saw the result on the screen  and tried   another effort  and he reached    venous occlusion strength so tHb increases  and   he  is getting a  small art occlusion plateau  and SmO2  back down to )  after the short  " relaxation.
 The fascinating  part is the bodies ability  to  re oxygenate in a very fast   way as well as  deoxygenate in a very fast way.
 This  clearly  pushes the question out on the " classical 'idea   of anaerobic    metabolic path ways ( ATP CRP  Glucose  and  finally  O2 ) . perhaps  Suhlman  et all are  right  with a  O2   involvement in msec  upon contraction.
 The immediately drop in O2  suggests a very high O2  involvement in the so  called  anaerobe alacticid  workouts.
 We asked that question  long before.
 Perhaps the reason why we  used this term  anaerobic alacticid  is due  to the  indirect  equipment we used  for testing.
 Anaerobe, as VO2  equipment have a lag time  and we  do not see VO2  going up in a Biceps  workout. ( HR  and VE not really  triggered.)
  alacticid  because we  can't  test lactate in that short time ( Lag time) of lactate  from the working  area to the finger. The lactate we produce is  either  immediately used  as energy  and as buffer help ( H + )  and than  when in the circulatory system is  moved into other muscles  for energy supply  MCT   and  never reaches in a  high enough concentration the finger or  any other test area.
 So  as we never  saw  O2  change  and no lactate, we named it anaerobe alacticid  , when in fact it may be incredible aerob  and incredible lacticid. ?????

 This opens  some  interesting questions.
  1. Reasoning of cooling down "
 The  reasoning to get rid of lacatic acid ?  still  true  or  may be  strange  that we  try to get rid  of a great energy source  after we just pushed the storage to the limit in the race or workout ???

2. Lactate tolerance training: Why would  we need to  learn to tolerate a  great energy source ???

3. HITT   for anaerobic  alacticid   metabolic pathway improvements ?

 Why  is some research (Gibala ) suggesting that short 15  sec  all out  ( anaerobic alacticid  9 HIIT )  improves   aerobic  endurance  as well.
  Perhaps because it si not  anaerobic alacticid    at all ????

 look at the simple test.   we may need  to push a certain time  to get  stimulation for the  " oxygen independent path ways  as we  first have to  " get   rid " of the O2  as it  is stroed in our   muscels.
  Why woudl nature create  Mb  when we never  =use it  or obnly at teh end of a workout. How about  at teh start of a  workout , where delivery   ( CO / VE ) due to lag time  not yet  is able to try to delivery the potential needed O2  .
 look at the O2  Diss curve in a complete  way not in the way we learn.
 here a  classical approach how  we get introduced to  O2  Diss curve  and here what we should  know  on the full curve.


  o2  diss curve  summaery.jpg

Above  a  fun " Game " where is Waldo ? Can you find a  complete O2  Diss curve including the Mb  O2  diss curve. ??

oxy and myo o2 curve.jpg

 And here a complete one to  loo    where the O2  can easier be taken at the start of a   load .

 This leaves the  question :
  What is endurance :

  Ipahr and ipahd end.jpg   

Juerg Feldmann

Fortiori Design LLC
Posts: 1,530
Now let's take a real   case  example. Client  with a post op ACL recovery situation. Assessment,w whether the rehab program achieved  a  symmetrical   working   leg .
 Test are    here is  quadriceps  vastus medialis.

What we look   is  2  main  situations.
a)  quality of contraction. Can  we reach  an intensity   where we see  after a compression  a venous occclusion trend  and if   we have a really good quality a  arterial occlusion.
 2. Metabolic ability  : how good  can we utilize  O2    and can we hold the   occlusion  long enough  to  deoxygenate  how far  down ?
 Than we compare  the  2  sides.
 Here a  case study done  many years back with a Portamon.

 Yellow is tHb,
 green is TSI %      red is O2Hb  and blue is  HHb.  The 2  blue   and 2 red  are different   depth of the  reactions  T1  and T3

ACL left and right.jpg

You describe what you see  and what is different  and try  to think  why. Which one is the ACL leg. 

And here  another example  looking more in the utilization trend  of a person  with a  foot fusion  and a  femur  fracture   from a few years ago  and now tested a few days ago.
 This was done with a MOXY  in California  by Mary Ann Kelly  JT.
  Which one is the   leg  with the fusion and   the  fratcured  femur ?.

fusion foot.jpg

Juerg Feldmann

Fortiori Design LLC
Posts: 1,530
Now  an interesting section in using MOXY is the  comparison between actual  strength  workouts  and  high intensity acyclic  workouts   we have in  sports  like ice hockey or  soccer  or  many of the popular   ball and game sports.
The big discussion    and ongoing discussion is  the  question of the  " endurance"
 The fact that Harre  asked this questions in the late 1960  shows  the ongoing discussion  and with the merging  ability to actually trace O2  utilization  we  now  may have  some new directions.
 Endurance :
 The  ability to sustain fatigue  or the ability to recover  fast ?

 When we look  how moxy  could  help here  ?
1. Endurance.  : Finding intensity , where  we just see, that  Oxygen delivery and utilization is balanced  and   on a level  where we create the highest performance. Billat  would name it most likely  VVO2.

2. Fast recovery:
    looking  at the ability to utilize  O2  as low  down as possible  and than  at rest  being able to reload   O2  as fast as possible   again. And repeat this over  an over again  without or minimal loss of performance.

!. Endurance.  The easiest  way to find this optimal intensity is    an assessment  , where we  can see physiological reactions. Than  based don this we have a base line of  performance  and in workouts  we can use this baseline  ( watt / Speed  and so on )  to  start our workouts  and  depending on goal setting we  push  slightly   above  on or beyond the  SmO2  balance. By using a MOXY  combined  with a wattage meter we have now the optimal feedback how wattage  may have to be adjusted if we like to keep  SmO2  balanced or  how SmO2  may " drift    when we keep  wattage ( performance  ) stable ( See Jiri's  pdf  on  Billat.)
2. For interval   or strength  we  can use SmO2  as a guide  with    utilization targets   ( numbers ) and recovery targets ( numbers )  as absolute values  to  determine    duration of   load,  / duration of recovery  and    amount of sets.
 This  holds  true  for  strength and endurance.

 Than  in this cases we  can use tHb  to guide  quality  and motivation of    contraction intensity.
  Compression only ,  venous occlusion  or  arterial occlusion ( ischemia  and   hypoxia  load )

 The question is,  whether  the same  workout   shows the same reaction in different athletes  or whether  we see in MOXY assessment  how different athletes  may react on the same load  and as such we can  design much more  and better individual   training ideas.
  Here  an example    courtesy  Brian Kozak.
 3 RIP loads   form three different athletes   and  three very different   responses.

3 cases biased.jpg

All 3 cases are bias  graphs, meaning we start  by  0  and look the relative trend of  O2Hb  and HHb
 Over time you can see in your  brain the SmO2 trend  if you look at this pictures  without having to look at SmO2  . On the other side  over time you  can  see O2Hb  and HHb  when looking  at SmO2  and tHb  as they all   combine  due to calculations.
 Remember.  tHb  = O2Hb  + HHb
 SmO2  is the % of  O2 Hb  to tHb

 So try to  look at this in your mind  and you can see how tHb  will be different  in trend in this 3  cases , as well how  SmO2 will  be  very different.
 The ability  to  deoxygenate under load  can than give  some information on the    muscle fiber  distribution and the ability  to  create   performance O2  dependent or independent.

  For  any  new  or already experiences MOXY  coach and or TEAM.
  The  first step  we  can help you is :
  Collect MOXY information  from your actual sport.  We prefer  if you  can use  2 MOXY's  one on the main muscle   and one on a  minimal or less involved muscle. Collect the data during a real game or real race   and send the CSV  file    you download from MOXY  to us. We  than  can give you feed backs  and  are able to think together using your  experience  and our  feedback.

Previous Topic | Next Topic

Quick Navigation:

Easily create a Forum Website with Website Toolbox.

HTML hit counter -